Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.

Identifieur interne : 001703 ( Main/Exploration ); précédent : 001702; suivant : 001704

Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.

Auteurs : Sofia Aronova [États-Unis] ; Karen Wedaman ; Scott Anderson ; John Yates ; Ted Powers

Source :

RBID : pubmed:17507646

Descripteurs français

English descriptors

Abstract

The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 and TORC2 fractionate with a novel form of detergent-resistant membranes that are distinct from detergent-resistant plasma membrane "rafts." Proteomic analysis of these TOR-associated membranes revealed the presence of regulators of endocytosis and the actin cytoskeleton. Genetic analyses revealed a significant number of interactions between these components and TORC1, demonstrating a functional link between TORC1 and actin/endocytosis-related genes. Moreover, we found that inhibition of TORC1 by rapamycin 1) disrupted actin polarization, 2) delayed actin repolarization after glucose starvation, and 3) delayed accumulation of lucifer yellow within the vacuole. By combining our genetic results with database mining, we constructed a map of interactions that led to the identification of additional genetic interactions between TORC1 and components involved in membrane trafficking. Together, these results reveal the broad scope of cellular processes influenced by TORC1, and they underscore the functional overlap between TORC1 and TORC2.

DOI: 10.1091/mbc.e07-03-0274
PubMed: 17507646
PubMed Central: PMC1949386


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wedaman, Karen" sort="Wedaman, Karen" uniqKey="Wedaman K" first="Karen" last="Wedaman">Karen Wedaman</name>
</author>
<author>
<name sortKey="Anderson, Scott" sort="Anderson, Scott" uniqKey="Anderson S" first="Scott" last="Anderson">Scott Anderson</name>
</author>
<author>
<name sortKey="Yates, John" sort="Yates, John" uniqKey="Yates J" first="John" last="Yates">John Yates</name>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17507646</idno>
<idno type="pmid">17507646</idno>
<idno type="doi">10.1091/mbc.e07-03-0274</idno>
<idno type="pmc">PMC1949386</idno>
<idno type="wicri:Area/Main/Corpus">001704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001704</idno>
<idno type="wicri:Area/Main/Curation">001704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001704</idno>
<idno type="wicri:Area/Main/Exploration">001704</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wedaman, Karen" sort="Wedaman, Karen" uniqKey="Wedaman K" first="Karen" last="Wedaman">Karen Wedaman</name>
</author>
<author>
<name sortKey="Anderson, Scott" sort="Anderson, Scott" uniqKey="Anderson S" first="Scott" last="Anderson">Scott Anderson</name>
</author>
<author>
<name sortKey="Yates, John" sort="Yates, John" uniqKey="Yates J" first="John" last="Yates">John Yates</name>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="ISSN">1059-1524</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Biological Transport (drug effects)</term>
<term>Biomarkers (metabolism)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (enzymology)</term>
<term>Cell Polarity (drug effects)</term>
<term>Cytoskeleton (drug effects)</term>
<term>Detergents (pharmacology)</term>
<term>Endocytosis (drug effects)</term>
<term>Gene Regulatory Networks (drug effects)</term>
<term>Glucose (deficiency)</term>
<term>Octoxynol (pharmacology)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein Binding (drug effects)</term>
<term>Proteomics (MeSH)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transport Vesicles (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (métabolisme)</term>
<term>Cytosquelette (effets des médicaments et des substances chimiques)</term>
<term>Détergents (pharmacologie)</term>
<term>Endocytose (effets des médicaments et des substances chimiques)</term>
<term>Glucose (déficit)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Marqueurs biologiques (métabolisme)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (enzymologie)</term>
<term>Octoxinol (pharmacologie)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Polarité de la cellule (effets des médicaments et des substances chimiques)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Réseaux de régulation génique (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
<term>Vésicules de transport (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Biomarkers</term>
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biological Transport</term>
<term>Cell Membrane</term>
<term>Cell Polarity</term>
<term>Cytoskeleton</term>
<term>Endocytosis</term>
<term>Gene Regulatory Networks</term>
<term>Protein Binding</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cytosquelette</term>
<term>Endocytose</term>
<term>Liaison aux protéines</term>
<term>Membrane cellulaire</term>
<term>Polarité de la cellule</term>
<term>Réseaux de régulation génique</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport biologique</term>
<term>Vésicules de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Membrane cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Marqueurs biologiques</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Détergents</term>
<term>Octoxinol</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Detergents</term>
<term>Octoxynol</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Protéomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 and TORC2 fractionate with a novel form of detergent-resistant membranes that are distinct from detergent-resistant plasma membrane "rafts." Proteomic analysis of these TOR-associated membranes revealed the presence of regulators of endocytosis and the actin cytoskeleton. Genetic analyses revealed a significant number of interactions between these components and TORC1, demonstrating a functional link between TORC1 and actin/endocytosis-related genes. Moreover, we found that inhibition of TORC1 by rapamycin 1) disrupted actin polarization, 2) delayed actin repolarization after glucose starvation, and 3) delayed accumulation of lucifer yellow within the vacuole. By combining our genetic results with database mining, we constructed a map of interactions that led to the identification of additional genetic interactions between TORC1 and components involved in membrane trafficking. Together, these results reveal the broad scope of cellular processes influenced by TORC1, and they underscore the functional overlap between TORC1 and TORC2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17507646</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1059-1524</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>18</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>2779-94</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 and TORC2 fractionate with a novel form of detergent-resistant membranes that are distinct from detergent-resistant plasma membrane "rafts." Proteomic analysis of these TOR-associated membranes revealed the presence of regulators of endocytosis and the actin cytoskeleton. Genetic analyses revealed a significant number of interactions between these components and TORC1, demonstrating a functional link between TORC1 and actin/endocytosis-related genes. Moreover, we found that inhibition of TORC1 by rapamycin 1) disrupted actin polarization, 2) delayed actin repolarization after glucose starvation, and 3) delayed accumulation of lucifer yellow within the vacuole. By combining our genetic results with database mining, we constructed a map of interactions that led to the identification of additional genetic interactions between TORC1 and components involved in membrane trafficking. Together, these results reveal the broad scope of cellular processes influenced by TORC1, and they underscore the functional overlap between TORC1 and TORC2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aronova</LastName>
<ForeName>Sofia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wedaman</LastName>
<ForeName>Karen</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yates</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003902">Detergents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9002-93-1</RegistryNumber>
<NameOfSubstance UI="D017830">Octoxynol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016764" MajorTopicYN="N">Cell Polarity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003599" MajorTopicYN="N">Cytoskeleton</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003902" MajorTopicYN="N">Detergents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017830" MajorTopicYN="N">Octoxynol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022161" MajorTopicYN="N">Transport Vesicles</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
<ArticleId IdType="pii">E07-03-0274</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.e07-03-0274</ArticleId>
<ArticleId IdType="pmc">PMC1949386</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Jul;17(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10404161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2000 Feb;113 ( Pt 4):571-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jan;21(1):109-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Oct 29;155(3):355-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11673477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jan 21;156(2):271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(5):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2002 Feb;3(2):110-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:381-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Dec 30;1585(2-3):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 May;23(9):3116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2003 Jul;4(7):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:53-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4676-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Apr;15(4):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 16;279(16):16017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 6;303(5659):808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2004;33:269-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15139814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2004 Jun 10;296(2):183-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15149849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Dec 1;117(Pt 25):6031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15536122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2005 Jan;6(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15569245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2005 Aug;11(8):353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Dec;16(12):5843-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Oct;80(5):325-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2006 May;49(5):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Feb 23;439(7079):998-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jun 19;173(6):963-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5861-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17840-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Mar;18(3):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 May-Jun;3(3):271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Feb 22;64(4):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1997207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:697-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Aug 24;62(4):631-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2167175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 1989;31:357-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2476649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 May;106(5):1453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Mar;128(5):779-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7533169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):297-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 May;11(6):493-536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7645343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Apr;125(2):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Feb;124(3):273-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Jul;12(7):2855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8335001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Dec;7(12):1909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Dec;135(6 Pt 1):1485-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Feb 21;88(4):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9038344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 May;13(6):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9178505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 11;272(28):17376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Nov;8(11):2291-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Nov 2;143(3):709-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9813092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Anderson, Scott" sort="Anderson, Scott" uniqKey="Anderson S" first="Scott" last="Anderson">Scott Anderson</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<name sortKey="Wedaman, Karen" sort="Wedaman, Karen" uniqKey="Wedaman K" first="Karen" last="Wedaman">Karen Wedaman</name>
<name sortKey="Yates, John" sort="Yates, John" uniqKey="Yates J" first="John" last="Yates">John Yates</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001703 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001703 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17507646
   |texte=   Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17507646" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020